Understanding Oyster **Population Connectivity and** Adaptation in Narragansett Bay

Amy Zyck, Rebecca Stevick, Marta Gomez-Chiarri, Jonathan Puritz

amaelia_zyck@uri.edu

University of Rhode Island Department of Biological Sciences

Linking larval coastal stressor response to population connectivity patterns in adult oysters

Oysters and environmental data collected from 6 sites

	Sewage Effluent*	Temperature (°C)	Salinity (ppt)	рН	Dissolved Oxygen (mg/L)	tude
PVD	59.860	15.8	18.82	7.68	4.9	Lati
GB	14.596	22.27	29.58	7.67	4.57	4
BIS	8.825	21.39	27.32	7.94	7.05	
BAR	17.881	22.08	29.08	7.69	5.37	
KIC	56.313	21.5	28.31	7.84	6.07	
MCD	12.111	22.24	20.68	7.69	8.76	

PVD – Narragansett Bay Commission GB, BAR, KIC – URI Watershed Watch BIS, MCD – Onset HOBO data loggers

Summary data based on summer averages

Expressed Exome Capture Sequencing!

Non-target regions

Selective enrichment of exon sequences of your study organism

Expressed Exome Capture Sequencing!

Population & Seascape Genomics Analysis

High levels of population differentiation in variants under selection

Salinity & pH may explain population structure in variants under selection

Salinity & pH may explain population structure in variants under selection

ER BR KC BS

Salinity & pH may explain population structure in variants under selection

RDA1 = 69.58%

Observed heterozygosity increases with pH

Application of genomic tools for oyster restoration

- Site selection is an important step in restoration
- It can be more accurately informed by understanding:
 - How populations are genetically connected
 - How environmental conditions promote or limit gene flow across populations

Acknowledgements

- Dr. Rebecca Stevick
- Dr. Marta Gomez-Chiarri
- Dr. Jon Puritz
- Maggie Schedl
- Jacob Green

amaelia_zyck@uri.edu

Funding: **Rhode Island Sea Grant** USDA-NIFA Hatch Program RI0019-H020 **Blount Shellfish Restoration Foundation** Student Endowment Fund

